

Grade Awarded	Mark Required (/100)	% candidates achieving grade
A	73+	30.1%
В	60+	23.2%
С	47+	23.0%
D	40+	10.1%
No award	<40	13.6%

Section:	Multiple Choice		Extended Answer		
Average Mark:	25.9	/40	35	/60	

	2014 Higher Chemistry Marking Scheme						
MC Qu	Answer	% Pupils Correct	Reasoning				
1	A	67	☑A Electron Arrangements: $Ca^{2+} = 2,8,8$ and $Cl^{-} = 2,8,8$ ☑B Electron Arrangements: $K^{+} = 2,8,8$ and $Br^{-} = 2,8,18,8$ ☑C Electron Arrangements: $Mg^{2+} = 2,8$ and $Cl^{-} = 2,8,8$ ☑D Electron Arrangements: $Na^{+} = 2,8$ and $S^{2-} = 2,8,8$				
2	D	57	1mol of NaCl formula units \leftrightarrow 1mol Na ⁺ ions1mol of Na ₂ SO ₄ formula units \leftrightarrow 2mol Na ⁺ ions \therefore 0.6mol NaCl f.u. \leftrightarrow 0.6mol Na ⁺ ions \therefore 0.2mol Na ₂ SO ₄ f.u. \leftrightarrow 0.4mol Na ⁺ ionsTotal number of Na ⁺ ions = 0.6mol + 0.4mol = 1mol				
3	D	75	EA Mass number is unchanged as nucleus is unchanged as $X \to X^* + e^-$ EB The charge on the nucleus is unchanged as the number of electrons decreases EC The nucleus is unchanged during $X \to X^* + e^ \therefore$ atomic number is unchanged D A group 1 element has 1 outer electron which is lost during $X \to X^* + e^-$				
4	В	49	 ☑A displacement: higher up metals displaces a lower down metal from its ion ☑B neutralisation: Hydrogen H⁺ ions react to become water H₂O ☑C oxidation: increase in the oxygen : hydrogen ratio with electrons being lost ☑D reduction: decrease in the oxygen : hydrogen ratio with electrons being gained 				
5	С	76	activation energy (reverse catalysed reaction) = activation energy (catalysed forward reaction) + enthalpy change = 35 + (190-160) = 35 + 30 = 65kJ mol ⁻¹				
6	A	78	$\square A$ enthalpy change $\triangle H$ = 100-200 = -100kJ mol ⁻¹ $\square B$ enthalpy change $\triangle H$ = 100-150 = -50kJ mol ⁻¹ $\square C$ endothermic reaction as products are higher in potential energy than reactants $\square D$ endothermic reaction as products are higher in potential energy than reactants				
7	С	82	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{0.0062 - 0.0020}{5 - 0}$ = $\frac{0.0042}{5}$ = 0.00084 mol l ⁻¹ min ⁻¹				
8	С	57	 A Rate decreases as reaction proceeds B Reaction comes to a slow stop not a sudden stop as reaction proceeds C Reaction rate slows as reaction proceeds and comes a gradual stop D Rate decreases as reaction proceeds 				
9	A	51	☑A volume of gas given off is less (0.5g chalk) and lump means less steep gradient ☑B lump would give a much slower initial reaction rate and gradient would be less ☑C reduction in mass of chalk to 0.5g would half the volume of gas given off ☑D Reaction rate would be approximately same so gradient would be similar				
10	A	39	☑A Curve R: higher temperature & greater number of particles (area under curve) ☑B Curve R must have a higher temperature than curve Q ☑C Curve R has greater area due to greater number of particles ☑D Curve R must have a higher temperature than curve Q				
11	С	52	n o. of mol = v olume x concentration = 0.1litre x 1mol $l^{-1} = 0.1$ mol 0.1mol releases -3.1kJ \therefore 1mol releases -31kJ				
12	D	83	 A boiling points increase due to greater London dispersion forces down group 7 B covalent radius increases as extra shell of electrons is added C 1st ionisation energy decreases (electrons easier to remove further from nucleus) D Van der Waals' forces are greater as bigger atoms more likely to temp dipole 				
13	В	61	Element Li Na K Rb Cs Deductions about Francium Melting Point (°C) 181 98 63 39 28 Less than 28°C 1 st Ionisation Energy (kJ mol ⁻¹) 520 496 419 403 376 Less than 282 kJ mol ⁻¹				

		1	
			\blacksquare A Electronegativies: Be=1.5 & Cl=3.0 \therefore difference = 1.5 \therefore least ionic character
14	Λ	54	⊠B Electronegativies: Ca=1.3 & Cl=3.0 ∴difference = 1.7
14	A	56	Image: Sector Secto
			☑D Electronegativies: Cs=0.8 & Cl=3.0 ∴ difference = 2.2 ∴ most ionic character
			🗷 A CO2 is linear and the molecule is non-polar due to shape
4 -		70	☑B NH₃ is trigonal pyramidal. Difference in the electronegativities means it is polar
15	В	72	$\mathbb{E}C$ CCl ₄ is tetrahedral and the molecule is non-polar due to shape
	_	-	\blacksquare D CH ₄ is non-polar due to the similar electronegativities of carbon and hydrogen
			EA Metallic substances (metal elements and alloys) are never compounds
	-		B Covalent bonds are found in diatomic elements e.g. H ₂ , N ₂ , O ₂ , F ₂ , Cl ₂ , Br ₂ , I ₂
16	C	58	☑C Hydrogen bonds are only found in covalent compounds with -OH,-NH or H-F bonds
	•		
			London dispersion forces are found in every substance
			\blacksquare A 1mol C atoms = 12g \therefore no. of mol = $\frac{mass}{gfm} = \frac{24}{12} = 2$ mol carbon atoms
17	ſ	45	E B 1mol O_2 molecules = $32g$ \therefore no. of mol = $\frac{mass}{gfm} = \frac{16}{32} = 0.5$ mol O_2 molecules
17		TJ	$\Box C$ 1mol H ₂ molecules = 2g \therefore no. of mol = mass/gfm = $^{2}/_{2}$ = 1mol H atoms \therefore 1mol e
			E D no. of mol = $\mathbf{v} \times \mathbf{c}$ = 1litre \times 1mol l ⁻¹ = 1mol \therefore 1mol NaCl f.u. = 2mol ions
			gfm of SO ₂ =64.1g : no. of mol = $\frac{mass}{gfm} = \frac{128.2}{64.1} = 2mol of SO_2$
	~	/	\blacksquare A gfm H ₂ =2g \therefore n o. of mol = ^{mass} / _{gfm} = ^{2.0} / ₂ = 1mol of H ₂
18	B	67	☑B gfm He=4g \therefore n o. of mol = ^{mass} / _{gfm} = ^{8.0} / ₄ = 2mol of He
_		01	$\mathbb{E}C$ gfm O_2 =32g \therefore n o. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{32}{32} = 1$ mol of O_2
			ID gfm Ne=20.2g \therefore no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{80.8}{20.2} = 4 \text{ mol of Ne}$
			🗷 A Cracking produces smaller unsaturated hydrocarbons e.g. ethene and propene
40		21	B Cracking naphtha does not produce petrol directly (bits might be added to petrol)
19	В	36	EC Reforming can produce benzene-based aromatic hydrocarbons
			Not serving can produce ringed cycloalkane hydrocarbons
			☑A Straight chained hydrocarbons are more likely to auto-ignite
			⊠B Branched-chain hydrocarbons are less likely to auto-ignite
20	Α	78	· · ·
_	• •	10	C Ringed cycloalkane hydrocarbons are less likely to auto-ignite
			D Ringed aromatic hydrocarbons are less likely to auto-ignite
			■A ethanol has a higher relative cost ∴ petrol would cost more
21	R	79	B more ethanol required due to lower octane number and higher costs
- <u>-</u>			EC ethanol has a lower octane rating more ethanol would be required
			☑D ethanol has a higher relative cost ∴ petrol would cost more
			Comparison of heptane and 2-methylhexane:
			2-methyl branch raises octane number from 0 to 43
22		60	Adding 2-methyl branch to 2,4-dimethylhexane to form 2,2,4-trimethylpentane:
22	υ	69	∴ adding 2-methyl branch to 2,4-dimethylhexane raises octane number from 66 by
			similar amount
			∴Octane number of 2,2,4-trimethylpentane = 66 + 43 = 99
			A esters are insoluble in water and are used as solvents
	-		
23	C	70	E B esters are sweet smelling and are used in perfumes
	~		C Esters are not used in toothpastes
			ED esters are sweet smelling and are used in flavourings
			A Polyester textile fibres are linear and not cross-linked
24	D	74	B Polyester fibres are long chain molecules
	U	/ T	EC polyesters are formed by condensation polymerisation
			☑D cured polyester resins are strong due to cross-linking of the polyester chains
			🗷 A ethene is not one of the two monomers used as ethene has only 2 carbons
25	В	62	⊠B but-2-ene gives -CH₃ groups on adjacent carbons and propene has 1x -CH₃ group
20	D	63	🗷 C ethene is not one of the two monomers used as ethene has only 2 carbons
			\blacksquare D but-1-ene is not a monomer used as there are no -C ₂ H ₅ side groups in polymer
· · · · · ·		•	

		65	☑A isoprene monomer will form a polymer by addition due to C=C double bonds ☑B No -OH, -NH or H-F groups to form hydrogen bonds							
26	D		S c isoprene monomer will form a polymer by addition due to C=C double bonds							
	•		⊠D addition polymer is formed due to C=C bonds and London dispersion between							
			E A fats and oils do not cross-link between chains during hardening							
~7			B hardening of oils into fats is caused by adding hydrogen across C=C bonds							
27	D	72	EC chain length does not change during hardening							
	_		☑D number of C=C double bonds decreases during hardening/hydrogenation							
			\square A cidified Dichromate gives a orange \rightarrow green colour change on alcohol oxidation							
20	٨	70	B Benedict's solution does not react with primary alcohols like ethanol							
28	A	79	図C Fehling's solution does not react with primary alcohols like ethanol							
			🗷 D Tollen's reagent does not react with primary alcohols like ethanol							
			☑A Benzene is not a raw material as it has to be extracted from crude oil, etc							
29	Δ	75	$oldsymbol{\mathbb{Z}}$ B Iron ore is iron oxide which is extracted from the ground \therefore raw material							
29	N	15	$oxtimes C$ sodium chloride is salt and is extracted from the ground \therefore raw material							
			⊠D water is widely available on this planet ∴ raw material							
			A due to the large quantities involved, iron production is a continuous process							
30	В	70	B Medicines like aspirin are made by batch process as smaller quanities are required							
			C due to the large quantities involved, ammonia production is a continuous process							
			D due to the large quantities involved, making sulphuric acid is a continuous process							
			$\begin{array}{cccc} \bullet & C_{(graphite)} + & O_2 & \rightarrow & CO_2 & & \Delta H=-394 \text{ kJ mol}^{-1} \\ \bullet & C_{(diamond)} + & O_2 & \rightarrow & CO_2 & & \Delta H=-395 \text{ kJ mol}^{-1} \end{array}$							
31	C	65	• $C_{(\text{graphite})}$ + $O_2 \rightarrow CO_2$ $\Delta H=-394 \text{ kJ mol}^{-1}$							
51		05								
			Add $0+0'$ C(graphite) \rightarrow C(diamond) $\Delta H=+1 \text{ kJ mol}^{-1}$							
			$\Theta \qquad CH_3CHO + 2\frac{1}{2}O_2 \rightarrow 2CO_2 + 2H_2O \qquad \Delta H_2$							
32	D	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
32	В	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
32	В	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
32	В	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
32	В	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
32	В	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
	B	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
32 33	B	58 67	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
	B	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
	B	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
33	B	67	• CHAR							
	B A C	58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
33	B A C	67	• CHAR							
33	B A C	58 67 59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
33 34	B A C D	58 67 59	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
33	B A C D	67	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
33 34	B A C D	58 67 59	●CH ₃ CHO + $2\frac{1}{2}O_2 \rightarrow 2CO_2 + 2H_2O$ ΔH_2 ● $2O_3 \rightarrow 3O_2$ ΔH_3 ● $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ ΔH_1 ●x-1 $2CO_2 + 2H_2O \rightarrow CH_3CHO + 2\frac{1}{2}O_2 - \Delta H_2$ ●x $\frac{1}{2}$ $O_3 \rightarrow 1\frac{1}{2}O_2$ $\frac{1}{2}\Delta H_3$ Add ●+@'+@' $C_2H_4 + O_3 \rightarrow CH_3CHO + O_2$ $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@' $C_2H_4 + O_3 \rightarrow CH_3CHO + O_2$ $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 \rightarrow CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 \rightarrow CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_1H_4 + O_3 + O_3 + O_3 + O_3 + O_3 $\Delta H_2 + O_3 + O_3 + O_3$ △Add ●+@'+@'Concentrations of reactants and pr							
33 34 35	A C D	58 67 59	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
33 34	B A C D B	58 67 59	●CH ₃ CHO + $2\frac{1}{2}O_2 \rightarrow 2CO_2 + 2H_2O$ ΔH_2 ● $2O_3 \rightarrow 3O_2$ ΔH_3 ● $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ ΔH_1 ●x-1 $2CO_2 + 2H_2O \rightarrow CH_3CHO + 2\frac{1}{2}O_2 - \Delta H_2$ ●x $\frac{1}{2}$ $O_3 \rightarrow 1\frac{1}{2}O_2$ $\frac{1}{2}\Delta H_3$ Add ●+@'+@' $C_2H_4 + O_3 \rightarrow CH_3CHO + O_2$ $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@' $C_2H_4 + O_3 \rightarrow CH_3CHO + O_2$ $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 \rightarrow CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 \rightarrow CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_2H_4 + O_3 → CH_3CHO + O_2 $\Delta H_1 - \Delta H_2 + \frac{1}{2}\Delta H_3$ △Add ●+@'+@'C_1H_4 + O_3 + O_3 + O_3 + O_3 + O_3 $\Delta H_2 + O_3 + O_3 + O_3$ △Add ●+@'+@'Concentrations of reactants and pr							

37	A	47	$\square A \ AI \rightarrow AI^{3*} + 3e^{-}$: aluminium metal is oxidised \therefore aluminium metal is reducing agent $\square B \ Ag^{+} + e^{-} \rightarrow Ag$: silver ions are reduced \therefore silver ions acting as oxidising agent $\square C \ Ag^{+} + e^{-} \rightarrow Ag$: silver ions are reduced \therefore silver ions are electron acceptors $\square D$ sulphide ions are unchanged and are spectator ions
38	В	58	 ☑ A the low conductivity of water is due to the low concentrations of ions in water ☑ B there are very few ions in pure water and this results in low conductivity ☑ C hydrogen bonding between water molecules does not contribute to conductivity ☑ D the low conductivity is due to number of ions not the ratio of H⁺ and OH⁻ ions
39	D	62	 A concentration of H⁺ ions decreases during dilution from pH=4 to pH=6 B concentration of H⁺ ions decreases during dilution from pH=4 to pH=6 C pH=4 to pH=6 is a difference in H⁺ concentration by a factor of 100 not 2 D Dilution from pH=4 to pH=6 is a decrease in H⁺ concentration by a factor of 100
40	D	76	 A beta radiation is negative and is attracted to the positive plate B beta radiation is negative and is attracted to the positive plate C beta radiation is negative and is attracted to the positive plate D alpha bends to negative, beta bends to positive and gamma does not bend

2	2014 Highe	r Chemistry Marking Scheme			
Long Qu	Answer	Reasoning			
1a	metallic covalent network molecular	Bonding 1st Twenty Elements Metallic solid lithium, beryllium, sodium, magnesium, aluminium, potassium, calcium Monatomic gas helium, neon, argon Covalent network boron, carbon (diamond), carbon (graphite), silicon Discrete covalent molecular gas hydrogen, nitrogen, oxygen, fluorine, chlorine Discrete covalent molecular solid sulphur, phosphorus, carbon (fullerene)			
1b	Delocalised electrons jump from atom to atom	The electrons in the outer shells of metals are delocalised as they are able to jump from atom to atom allowing electrical conduction through the metal.			
1c	Same shell filling up and more positive nucleus pulls in outer shell more	Elements in same period have same number of occupied electron shells meaning the element does not increase in size across period. The nucleus becomes increasing positive across a period and this increased charge is attracted to the outer shell more and decreases the size of the atom.			
2a	naphtha	Petrol is made by reforming the naphtha fraction. Diesel is made by blending the gas oil fraction.			
2b(i)	diagram showing:	$H \stackrel{H}{\to} C - H \stackrel{H}{\to} $			
2b(ii)	cycloalkanes or aromatic hydrocarbons	Petrol will auto-ignite before the spark if there is a high a degree of straight chained hydrocarbons. By adding hydrocarbon molecules with branches or rings then the likelihood of auto-ignition before the spark is reduced.			
2c(i)	Answer to include:	$\frac{1}{2}mark$ $\frac{1}{2}mark$ Temperature not too highTemperature high enough toto denature the enzyme.give fast reaction.			
2c(ii)	Decrease in oxygen : hydrogen ratio	Reduction is defined as a reduction in the oxygen : hydrogen ratio. It can also be viewed as the opposite of oxidation. Oxidation: Primary alcohol $H \to H$ $H - C - C - OH \to H - C - C + H$ $H \to H$ C_{2H6O} C_{2H4O} Reduction: Primary alcohol $H \to H$ C_{2H4O} C_{2H4O} $H \to H$ C_{2H4O} C_{2H6O}			
2c(iii)	87.1%	$C_{6}H_{12}O_{6} \longrightarrow 2C_{2}H_{5}OH + 2CO_{2}$ $1mol \qquad 2mol \\ 180g \qquad 92g \\ 1000g \qquad 92g \times \frac{1000}{180} \\ =511.1g \\ % Yield = \frac{Actual}{Theoretical} \times 100 = \frac{445}{511.1} \times 100 = 87.1\%$			
3a (i)	Answer to include:	Decrease the volume of potassium iodide solution and increase the volume of water to ensure the total volume of the two solutions is the same.			

2	2	Use a smaller measuring Use a white tile for Ensure the beakers are dry before
3 a (ii)	2 answers from:	cylinder or syringe for volumes observing colour changes use so concentrations are accurate
3b	1 answer from:	Collision angle mustCollision energy must be in excess of the minimumbe correctenergy to overcome the activation energy.
4 a	Answer to include:	H-F has hydrogen bonding which raises the b.pt. by bringing the molecules closer together. F-F is non-polar covalent molecular. B.pt. is lower as there is only weak London dispersion forces between molecules.
4b	pH > 7 e.g. 8-11	The salt of a weak acid and a strong alkali neutralisation reaction gives an alkaline pH when dissolved in water.
5a (i)	condensation	Nylon is a polyamide polymer made by condensation polymerisation of a diacid monomer and a diamine monomer. Other condensation polymers include Kevlar and polyester
5a (ii)	one functional group on monomer	Condensation polymers require monomers with 2 functional groups per monomer so that the polymer chain keeps on going in both directions. When molecules containing only one functiona group are added, the polymer chains are prevented from becoming very long as the one-functional group monomer prevents the polymer from extending any further.
5b	conductor	Polymer Biopol Poly(ethenol) Poly(ethyne) kevlar Property Biodegradable Soluble Conductor Very strong
6	Answer to include:	OH ⁻ ions in alkali react with H ⁺ ion in equilibrium by neutralisation. Removal of H ⁺ ions (product) from equilibrium moves equilibrium to right to replace H ⁺ ∴ colour becomes more yellow as equilibrium moves to right.
7a		$ \begin{array}{c} {}^{14}_{7} N + {}^{1}_{0} n \longrightarrow {}^{14}_{6} \mathcal{C} + {}^{1}_{1} p \\ {}^{nitrogen nucleus} & {}^{nutron captured} & {}^{carbon nucleus} & {}^{proton ejected} \end{array} $
7b	Neutron splits into proton and electron	During Beta-emission, a neutron splits into a proton and an electron.
7 c(i)	24225 years	From graph: 5% of carbon-14 content at 4.25 half lives 1 half-life = 5700 years 4.25 half-lives = 5700 years x ^{4.25} /1 = 24225 years
7 c(ii)	Too many half-lives have passed to measure	When too many half-lives have passed, it is not possible to measure half-lif with any accuracy as there is too little ¹⁴ C left in the sample.
8a	37.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$-65kJ \leftrightarrow 56g$ $-43.89kJ \leftrightarrow 56g \times \frac{-43.89}{-65}$ $= 37.8g$
8b	-147	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\overset{\text{Add}}{\bullet \bullet \bullet \bullet \bullet' \bullet \bullet'} CaO(s) + H_2O(l) \rightarrow Ca(OH)_{2(aq)} \qquad \Delta H=-147 \text{kJ mol}^{-1}$

9a (i)	conc sulphuric acid	PPA Technique Question				
9a (ii)	Reactants flammable	PPA Technique Question				
9a (iii)	Diagram Showing:	Н-С ОНН О-С-С-Н НН				
9b	CHCl₃ + 4NaOH ↓ HCOONa + 3NaCl + 2H₂O	CHCl₃ + 4NaOH → HCOONa + 3NaCl + 2H₂O				
10a	heterogeneous	HomogeneousCatalyst in samestate as the reactantsHeterogeneousCatalyst in different state from the reactants				
10b	CH₄(g) + 2H₂O(g) ↓ CO₂(g) + 4H₂(g)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
10c(i)	44.8	$Q = I \times t = 200 \times (30 \times 60) = 360000C$ $2H^{+} + 2e^{-} \longrightarrow H_{2}$ $2mol \qquad 1mol$ $2\times96500C \qquad 24 \text{ litres}$ $193000C \qquad 24 \text{ litres} \times \frac{360000}{193000}$ $= 44.8 \text{ litres}$				
10c(ii)	Water is a renewable source	The hydrogen formed by the electrolysis of water is burned and turns back nto water again. This means water will not run out.				
11a	w=10 x=5 y=2 z=1					
11b	4-methylpentan-2-one	Identify functional group: 2. Identify longest chain with functional group: 3. Give lowest numbering system to functional group: 4. Identify side groups: 5. Give side groups number from existing numbering system: 4. Methylpentan-2-one 4. Give side groups number from existing numbering system: 5. Give side groups number from existing number fr				
11c	CFCs destroy ozone	Chlorofluorocarbons break down ozone. Ozone is required to absorb harmful ultraviolet light from sun. U.V. light can cause sunburn and skin cancer.				
11d(i)	hydrogenation	Addition of hydrogen across C=C double bond is also known as hydrogenation				

11d(ii)	H—С—Н H—С—С—СН₃ O	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
12a	Fibrous	Protein Description Fibrous Structural protein needed to support the internal structures in organisms e.g. collagen Globular Specifically shaped proteins like needed to regulate body systems e.g. enzymes and hormones
12b	0 H ∥ − C − N −	Amide links are found in polyamide O H polymers while peptide links are found $ $ $ $ in proteins. Both have the structure: $-C$ N
12c	Hydroxyl	Hydroxyl groups have the formula -OH and found in alcohols.
12d(i)	Glycerol	Glycerol is also known as propane-1,2,3-triol and has the structure:HHH $H - C - C - C - H$ $OH OH OH$
12d(ii)	Dotted line between N-H group and O-H group or between OH groups	Hydrogen bonding occur between molecules containing N-H groups, O-H groups or H-F molecules. The boiling point of the substance is elevated as the molecules become closer together due to the hydrogen bonding.
13a	Use top of liquid to measure volume	PPA Technique Question: The bottom of the curve (meniscus) is usually used to measure the starting and end volumes in a burette. When the solution is not transparent, the top of the curve must be used as the meniscus is not visible.
13b	colourless → blue/black	PPA Technique Question: Iodine is in the burette at start \therefore colour in conical flask must be colourless as there is not
13c	Larger volumes are added to work out roughly where colour change takes place	The rough titration is deliberately inaccurate but is used to work out roughly where the colour change will take place. Typically 1cm ³ is added at one time and the flask stirred. The volume from the rough titration will be inaccurate but the next titration then adds the majority of the rough titration volume in one go and remainder of the volume added drop by drop so that the final volume is very accurately determined.
13d	0.2794g	no. of mol I ₂ = volume x concentration = 0.0254litres x 0.00125molt ⁴ = 3.175x10 ⁻⁵ mol C ₆ H ₈ O ₆ + I ₂ → C ₆ H ₆ O ₆ + 2H ⁺ + 2I ⁻ 1mol 1mol 3.175x10 ⁻⁵ mol 3.175x10 ⁻⁵ mol ∴ 20cm ³ orange juice contains 3.175x10 ⁻⁵ mol Vitamin C (C ₆ H ₈ O ₆) ∴ 1000cm ³ orange juice contains 3.175x10 ⁻⁵ mol x ¹⁰⁰⁰ / ₂₀ = 1.5975x10 ⁻³ mol Vitamin C (C ₆ H ₈ O ₆) 1 mol Vitamin C (C ₆ H ₈ O ₆) = (6x12) + (8x1) + (6x16) = 72+8+96 = 176g mass = no. of mol x gfm = 1.5975x10 ⁻³ mol x 176 g mol ⁻¹ = 0.2794g
14a	0.973litres	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	2020	9 2014 Higher Marking Scheme

			2	5	Tot	al Moles	of Produ	ıcts
	C5H6N6O6	Rule	Quantity	Reaction	СО	H₂O	CO2	N ₂
1 1 1	C5F161 V6 C6	1	5×С	5C ightarrow 5CO	5			
14b	\downarrow	2	40 of total 70 react with 8H	$8H + 4O \rightarrow 4H_2O$	5	4		
	2CO+4H ₂ O+3CO ₂ +2N ₂	3	30 remaining react with 3CO	$3CO + 3O \rightarrow 3CO_2$	2	4	3	
		4	$4N$ join to form N_2	$4N \to 2N_2$	2	4	3	2
15a	$\begin{array}{c} OH \\ H-C-H \\ O \\ H \\ H \\ H \\ H \\ H \\ H \end{array}$ It is important to redraw the serine molecule into the same format as the glycine molecule first. Once the -CH ₂ OH group in serine has been identified the zwitterion is easy to draw using the template in the example.							
15b	Answer to include:		1x10 ⁻⁵ mol l ⁻¹ sodium hydroxide solution ∴ [OH ⁻] = 1 x 10 ⁻⁵ ∴ [H ⁺] = 1 x 10 ⁻⁹ ∴ pH = 9 As pH is less than IEP pH=9.7 ∴ positive ion is formed ∴ positive ions attracted to negative electrode					